If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-26t-40=0
a = 5; b = -26; c = -40;
Δ = b2-4ac
Δ = -262-4·5·(-40)
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-6\sqrt{41}}{2*5}=\frac{26-6\sqrt{41}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+6\sqrt{41}}{2*5}=\frac{26+6\sqrt{41}}{10} $
| 4=v3 | | 2a^2-5=25 | | (x+3)(2x-1)-(4x²-1)=0 | | X^2+10=5x+4 | | 1/3x+5=20 | | 4(4x-1.9)=3x-7.6 | | -6x+3(x+7)=18 | | q+15=20 | | 6(a+3=21-3(1-2a) | | -0.5x+7.79=-0.3x+3.39 | | y3+19=21 | | 23=19+x | | 42(3y-4)=88(y-1) | | 3.9x-93=2.7x+3 | | 3x6=x9 | | t5=2 | | 39=7+4d | | -7(x+1)-16=18+8 | | -2(u-6)=-5u+33 | | 6(x-1.1)=8.4 | | -32=-8y+4(y-3) | | 2/5=14/w | | H+3h=4 | | -2(u-6)=5u+33 | | -2x-3=-9-4x | | -8-x=-5x-16 | | -(x+5)=-7(x+1) | | 7=u/3-8 | | 1+x÷17=3 | | -x+5)=-7(x+1) | | 33=3(y-4)-8y | | 32=-3x+7x |